As with transistors, diodes are fabricated from semi-conducting material. So, the first letter in their identification is A for germanium diode or B for silicon diode. They can be encased in glass, metal or a plastic housing. They have two leads: cathode (k) and an anode (A). The most important property of all diodes is their resistance is very low in one direction and very large in the opposite direction. When a diode is measured with a multimeter and it reads a low value of ohms, this is not really the resistance of the diode. It represents the voltage drop across the junction of the diode. This means a multimeter can only be used to detect if the junction is not damaged. If the reading is low in one direction and very high in the other direction, the diode is operational. When a diode is placed in a circuit and the voltage on the anode is higher than the cathode, it acts like a low value resistor and current will flow. If it is connected in the opposite direction it acts like a large value resistor and current does not flow. In the first case the diode is said to be "forward biased" and in the second case it is "reverse biased." Figure 5.1 shows several different diodes:
Fig. 5.1: Several different types of diodesThe diodes above are all single diodes, however 4 diodes are available in a single package. This is called a BRIDGE or BRIDGE RECTIFIER. Examples of a bridge are shown in the diagram below:
You must be able to identify each of the 4 leads on a bridge so that it can be inserted into a circuit around the correct way. The surface-mount device above is identified by a cut @ 45° along one side. The leaded bridge has one leg longer than the others and the top is marked with AC marks and "+." The high-current bridge has a corner cut off and the other surface-mount device has a cut or notch at one end.These devices are added to a circuit as shown in the next diagram:


Fig. 5.2: Diode symbols: a - standard diode, b - LED, c, d - Zener, e - photo, f,g - tunnel, h - Schottky, i - breakdown, j - capacitative
One of the most important things to remember about a LED is the characteristic voltage that appears across it when connected to a voltage. This does not change with brightness and cannot be altered.For a red LED, this voltage is 1.7v and if you supply it with more than this voltage, it will be damaged. The easy solution is to place a resistor on one lead as shown in the diagram below: 

No comments:
Post a Comment