For electronic devices to function it is necessary to have a DC power supply. Batteries and rechargeable cells can fulfill the role, but a much more efficient way is to use a POWER SUPPLY. The basic component of a power supplyr is a transformer to transform the 220V "mains" to a lower value, say 12V. A common type of transformer has one primary winding which connects to the 220V and one (or several) secondary windings for the lower voltages. Most commonly, cores are made of E and I laminations, but some are made of ferromagnetic material. There are also iron core transformers used for higher frequencies. Various types of transformers are shown on the picture below.
Fig. 3.5: Various types of transformers
Symbols for a transformer are shown on the figure 3.6 Two vertical lines indicate that primary and secondary windings share the same core.
Fig. 3.6: Transformer symbols
With the transformer, manufacturers usually supply a diagram containing information about the primary and secondary windings, the voltages and maximal currents. In the case where the diagram is missing, there is a simple method for determining which winding is the primary and which is the secondary: a primary winding consists of thinner wire and more turns than the secondary. It has a higher resistance - and can be easily be tested by ohmmeter. Figure 3.6d shows the symbol for a transformer with two independent secondary windings, one of them has three tappings, giving a total of 4 different output voltages. The 5v secondary is made of thinner wire with a maximal current of 0.3A, while the other winding is made of thicker wire with a maximal current of 1.5A. Maximum voltage on the larger secondary is 48V, as shown on the figure. Note that voltages other than those marked on the diagram can be produced - for example, a voltage between tappings marked 27V and 36V equals 9V, voltage between tappings marked 27V and 42V equals 15V, etc.
No comments:
Post a Comment