The diagram of a power supply in figure (3.8) uses several diodes. The first four are in a single package, identified by B40C1500. This is a bridge rectifier.The LED in the circuit indicates the transformer is working. Resistor R1 is used to limit the current through the LED and the brightness of the LED indicates the approximate voltage.Diodes marked 1N4002 protect the integrated circuit.Figure 5.3 below shows some other examples of diodes. The life of a globe can be increased by adding a diode as shown in 5.3a. By simply connecting it in series, the current passing through the globe is halved and it lasts a lot longer. However the brightness is reduced and the light becomes yellow. The Diode should have a reverse voltage of over 400V, and a current higher than the globe. A 1N4004 or BY244 is suitable.A very simple DC voltage stabilizer for low currents can be made using 5.3c as a reference.
Tuesday, March 18, 2008
5.3 Practical examples
5.2 Diode characteristics
5.1 Diode identification
5. Diodes
As with transistors, diodes are fabricated from semi-conducting material. So, the first letter in their identification is A for germanium diode or B for silicon diode. They can be encased in glass, metal or a plastic housing. They have two leads: cathode (k) and an anode (A). The most important property of all diodes is their resistance is very low in one direction and very large in the opposite direction. When a diode is measured with a multimeter and it reads a low value of ohms, this is not really the resistance of the diode. It represents the voltage drop across the junction of the diode. This means a multimeter can only be used to detect if the junction is not damaged. If the reading is low in one direction and very high in the other direction, the diode is operational. When a diode is placed in a circuit and the voltage on the anode is higher than the cathode, it acts like a low value resistor and current will flow. If it is connected in the opposite direction it acts like a large value resistor and current does not flow. In the first case the diode is said to be "forward biased" and in the second case it is "reverse biased." Figure 5.1 shows several different diodes:
The diodes above are all single diodes, however 4 diodes are available in a single package. This is called a BRIDGE or BRIDGE RECTIFIER. Examples of a bridge are shown in the diagram below:
These devices are added to a circuit as shown in the next diagram:
One of the most important things to remember about a LED is the characteristic voltage that appears across it when connected to a voltage. This does not change with brightness and cannot be altered.For a red LED, this voltage is 1.7v and if you supply it with more than this voltage, it will be damaged. The easy solution is to place a resistor on one lead as shown in the diagram below:
Sunday, March 9, 2008
4.5 Practical example
The most common role of a transistor in an analog circuit is as an active (amplifying) component. Diagram 4.8 shows a simple radio receiver - commonly called a "Crystal Set with amplifier."
Variable capacitor C and coil L form a parallel oscillating circuit which is used to pick out the signal of a radio station out of many different signals of different frequencies. A diode, 100pF capacitor and a 470k resistor form a diode detector which is used to transform the low frequency voltage into information (music, speech). Information across the 470k resistor passes through a 1uF capacitor to the base of a transistor. The transistor and its associated components create a low frequency amplifier which amplifies the signal.On figure 4.8 there are symbols for a common ground and grounding. Beginners usually assume these two are the same which is a mistake. On the circuit board the common ground is a copper track whose size is significantly wider than the other tracks. When this radio receiver is built on a circuit board, common ground is a copper strip connecting holes where the lower end of the capacitor C, coil L 100pF capacitor and 470k resistor are soldered. On the other hand, grounding is a metal rod stuck in a wet earth (connecting your circuits grounding point to the plumbing or heating system of your house is also a good way to ground your project).Resistor R2 biases the transistor. This voltage should be around 0.7V, so that voltage on the collector is approximately equal to half the battery voltage.
4.4 TUN and TUP
4.3 The safest way to test transistors
Another way to test transistor is to put it into a circuit and detect the operation. The following circuit is a multivibrator. The "test transistor" is T2. The supply voltage can be up to 12v. The LED will blink when a good transistor is fitted to the circuit.
4.2 Basic characteristics of transistors
So, if the voltage across the transistor is increased, the current must be dropped.For example, maximum ratings for a BC107 transistor are:ICmax=100mA,UCEmax = 45V andPCmax = 300mWIf we need a Ic=60mA , the maximum voltage is:
For UCE = 30V, the maximum current is:
Fig. 4.6: Measuring the hFE
4.1 The working principle of a transistor
Transistors are used in analog circuits to amplify a signal. They are also used in power supplies as a regulator and you will also find them used as a switch in digital circuits. The best way to explore the basics of transistors is by experimenting. A simple circuit is shown below. It uses a power transistor to illuminate a globe. You will also need a battery, a small light bulb (taken from a flashlight) with properties near 4.5V/0.3A, a linear potentiometer (5k) and a 470 ohm resistor. These components should be connected as shown in figure 4.4a.
The relationship between the current flowing through the collector and the current flowing through the base is called the transistor's current amplification coefficient, and is marked as hFE. In our example, this coefficient is equal to:
Put the headphones on and place a fingertip on point 1. You will hear a noise. You body picks up the 50Hz AC "mains" voltage. The noise heard from the headphones is that voltage, only amplified by the transistor. Let's explain this circuit a bit more. Ac voltage with frequency 50Hz is connected to transistor's base via the capacitor C. Voltage on the base is now equal to the sum of a DC voltage (0.6 approx.) via resistor R, and AC voltage "from" the finger. This means that this base voltage is higher than 0.6V, fifty times per second, and fifty times slightly lower than that. Because of this, current on the collector is higher than 1mA fifty times per second, and fifty times lower. This variable current is used to shift the membrane of the speakerphones forward fifty times per second and fifty times backwards, meaning that we can hear the 50Hz tone on the output.Listening to a 50Hz noise is not very interesting, so you could connect to points 1 and 2 some low frequency signal source (CD player or a microphone).There are literally thousands of different circuits using a transistor as an active, amplifying device. And all these transistors operate in a manner shown in our experiments, which means that by building this example, you're actually building a basic building block of electronics.
4. Transistors
Transistors are active components and are found everywhere in electronic circuits. They are used as amplifiers and switching devices. As amplifiers, they are used in high and low frequency stages, oscillators, modulators, detectors and in any circuit needing to perform a function. In digital circuits they are used as switches. There is a large number of manufacturers around the world who produce semiconductors (transistors are members of this family of components), so there are literally thousands of different types. There are low, medium and high power transistors, for working with high and low frequencies, for working with very high current and/or high voltages. Several different transistors are shown on 4.1.The most common type of transistor is called bipolar and these are divided into NPN and PNP types.Their construction-material is most commonly silicon (their marking has the letter B) or germanium (their marking has the letter A). Original transistor were made from germanium, but they were very temperature-sensitive. Silicon transistors are much more temperature-tolerant and much cheaper to manufacture.